A PROBLEM IN THE THEORY OF EIGENVALUES

In a certain special case (oscillating string, the natural bound-
ary conditions) the spectrum of eigenvalues determines uniquely
the differential equation to which it corresponds (in Schrédinger’s
theory, the “equation of amplitudes”).

In those fields of theoretical physics (wave mechanics, theory of oscil-
lations) where eigenvalue problems arise, the question of the uniqueness of
determination of the mechanical system (i.e., of the Hamiltonian) by the set
of the eigenvalues of the corresponding linear equation can be important. If
a spectrum really completely determines the differential equation, then in
principle it would become possible to determine the structure of an atomic
system from the frequencies it is radiating or absorbing. This would mean
solving a problem which is inverse to the Schrédinger problem. However,
an approach to the general problem leads to many difficulties. Therefore,
below we consider only a special case.

We prove that among all equations

d*p
) —q(x) p+ ap =0,

where a is a “parameter” of eigenvalues, y is a constant, g(z) is a continuous
function, for “natural boundary conditions”

¢'(0)=¢'(m) =0

only the equation of the oscillating string

d?y
Hagz T =0
has the eigenvalues
an, = kn?.



2 A Problem in the Theory of Eigenvalues

§1. We start with the differential equation

(py) — qy = My + ay =0, (1)

where Ary is a perturbation term, ¢, r,p,p’ are continuous functions of z
and p > 0.
For the boundary conditions y'(0) = 3/(7) = 0 the differential equation
(1) has a countable set of eigenvalues which we can arrange in increasing
order:
ay, a9, Qs, ... (2)

These eigenvalues are functions of A. In this section our purpose is to show
that these functions have no singularities on the real axis. It is sufficient to
demonstrate that o;(A) are regular analytical functions of X in the vicinity
of the point A = 0. The proof is by observation that the latter statement
applies as well to the equation

(y') + (@ = dor)y — (A = Xo)ry + ay =0 (3)

in the vicinity of arbitrary real Ag. But equations (1) and (3) are identical.
First, let us suppose that a = 0 is not an eigenvalue of the equation

(py') +qy — ay =0. (1)
In this case, the differential operator
L(y) = (') +aqv

has a Green function G(z,§).
Then the power series

S(:L’, £, )\) = Gl(x,é) + )\Gz(.’lt,f) -+ >\2G3(.’L‘, f) + ..., (4)
in which

Gn(x,f) =
/' . / G'(x, tl) ’l‘(tl) G(tl, t2) T(tg)...’r(tn_l) G(tn_l, E) dtl dtz...dtn_l
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converges inside some disk || < p, since G(z,¢) and r(z) are bounded. We
k(z,€,))
r(§)

where k(z,€,)) is the resolvent of the kernel G(z,€)r(z). The function
S(z, &, \) represents for |A| < p the Green function of the differential oper-

have

S(z,€,A) =

ator
L(y) = Ary = (o) —qy — Ary.
The eigenvalues of equation (1) are the null-points of the Fredholm

denominator of the kernel S(z,&,\). This means that for |A| < p we can
determine these eigenvalues from the equation:

1 1 1
D(a,\) =1— F1)1(A) a+ 51)2(,\) 2 - §D3(/\) aA+.=0, (5
where
Dn()‘) =
S(.’El,.’El,A) S(.’El,xz,)\) ..... S(:vl,a:n,)\)
S(zg,r1,A) S(x2,22,A) ..... S(zg, Tn, A)
// ...................................... dzridzxy...dx,.
S(zp,x1,A) S(xn,z2,A) ..... S(zpn, Tn, A)

The series (5) is uniformly convergent for [A| < p — ¢, where € is a
positive number and for all finite values of a, see [1]. Consequently it is an
analytic function of two variables, and the regions of convergence are the
whole a-plane and the circle |A| < p.

If we expand D(a,\) by powers of a — a;(0) and A and take into
account that a;(0) is a simple root of the equation D(a,0) = 0, we will
find that the constant term of the expansion vanishes, but the coefficient of
the term [o — c;(0)] is nonzero. According to the theorem about implicit
functions, we can state that within some convergence circle the function
a;()), i.e., the root of the equation D(a, A) = 0 which coincides with o;(0)
at A = 0, can be expanded into series by powers of A. Thus the eigenvalues
are analytic functions of the perturbation parameter A, provided a = 0
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is not an eigenvalue of equation (1’). The last condition, however, is not
essential. Indeed, assuming a = 0 is an eigenvalue of (1’), let us denote by
k the nearest eigenvalue by module. Then we consider the equation

(py') - (q + g) v+ By =0, (6)

for which ( is not an eigenvalue. The eigenvalues of the equation

(py') — (q+§)y—>\ry+ﬁy=0 (M

are analytic functions of A in the vicinity of A = 0. However, the eigenvalues
of (7) and (1) differ merely by a constant % Therefore, they are also
analytic functions of \.

We have proved that for any value of A the eigenvalues of equation (1)
are analytic functions of A.

§2. The same reasoning shows that D(z, &, a, ) (Fredholm’s numer-
ator) is also an analytic function of a and ) in the whole a-plane and in
some circle |A\| < p.

We denote the normalized eigenfunctions of equation (1’) by

p1(z, A), p2(z, A), ... (8)

It is well known that the products ¢;(z, A) v;(£, A) are residues of the

resolvent

A
F(w,é;a,x)z%,)_)

at the point a = a;(A). Thus we have

1
ol V6N = 5 [ Tlagi,3) do, Q

where C' is a curve on the a-plane which encircles the point a;(A), but no
other a;(X) (j # 7).

When A belongs to the region |A| < a < p where a is a positive number
to be selected later, each eigenvalue remains in some region B;. It is easy
to see that for sufficiently small a no region B; has points in common with
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B;(j # 1). This follows from the following two facts: 1) in the case of
limited changes of A all variations of the eigenvalues a;()) are uniformly
bounded, and 2) if a1()),..., An(A) are the first N eigenvalues that are
analytic functions of A, we can take N so large that ay;1(}),... for every
|A] < p remain greater than a;()) for the same A.

Since a;(0) are all distinct, we can take a so small that for [A| < a
all o5()\) (i =1, ..., N) are regular and the regions B; are pairwise disjoint.
Now we can choose C in such a way that it encircles B;, but does not
encircle any point of B; (j # i) (see Fig. 1). Formula (9) then shows that
for sufficiently small A, the function ¢;(z, A) ¢i(§, A) depends analytically
on . From this we can conclude that ¢;(z, ) is also an analytic function

of A

real

Bi-1 @ @ axis

a—plane

Fig.1.

For further reasoning the expressions of the perturbed eigenvalues are
essential. We write here only the first three terms:
S €ij(Ao)

o = - it - ? ,
) = @)+ (=D el + O0=2a)" 3

+---, (10)

where ¥’ denotes summation with the case i = j excluded, and

cis00) = | " r(@)es @, M)y (2, Ao) do. (11)

§3. Let us now assume for a moment that the equation

d?¢
Nggz'—"”(m)SOﬁLaSO:O (12)
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has the same system of eigenvalues as the equation
d?p
KE -+ ap = 0 (12,)

when the boundary conditions are ¢'(0) = ¢'(7) = 0.
Then of necessity, 4 = k. This follows from the comparison of the
asymptotic expressions for the eigenvalues

an =n?u+0(1) of (12) and o, =n?k+O0(1) for (12).

Let us write the equations (12), (12’) for the case A=0and A =1

dzgoz(:z;,O)
K,T + ago,-(m, O) = 0,
d?p;i(z, 1
K,M —r(z) pi(z,1) + aspi(x, 1) = 0.

dx?
We multiply the first of these equation by ¢;(z, 1), the second by ¢;(z,0),

subtract and integrate the result. Then according to the Green formula we
obtain

/ r(z) i(z, 0) iz, 1) dz = 0. (13)

For large values of ¢ we have asymptotic formulas:

wi(z,0) = 14/ —2-cosz'x+0 <l> ,
T )
/2 , 1

vi(z,1) = ;cosw:+0 (;) ,

yielding the asymptotic expression
2 1 1 1
vi(z,0) pi(z,1) = =cos? iz + O (—) = —[1 4 cos2iz] + O (—) .
s i T i
Now from

ks ™
lim r(z) cos2ixdr =0 and lim r(z) O (%) dr =0

t— o0 0 1—00 0
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and from (13) we conclude that

lim 1 r(z) pi(z,0) pi(z,1)dz = -71}-/7"(.@) dr =0

t—oo T

However, since ¢1(z,0) = 1 /4/m, we can write the expansion of a1 () for
Mo = 0 according to (10) in the form

00 2

2 €15
a1 () = =\ §W+ (14)
From this we conclude that for sufficiently small X, the value of a;(}) is
negative.

Differentiating (14) we see that the derivative of a;(A) for sufficiently
small positive values of ) is negative. But we have already adopted that
a1(0) = a;(1) = 0. Therefore, o ()\) somewhere in the interval (0,1) is
positive and changes its sign.

Let A\ = 6§ be the point where o/(§) = 0. Since o} (0) = 0 we find that
at some point §; the second derivative must vanish.

According to (10), this means

(e o]

Z 81_1(51 -0
a1(61) —a;(61)

Jj=

Since all terms here are negative, we obtain

3;(61) =0, €1;(61)=0 (§#1). (15)

However, according to (11) €1, are the coefficients of expansion of the
function g(z) ¢(z;,8;) by the series of orthogonal functions ¢;(z,81) (j =
1,2,...). The system is complete and, therefore, it follows from (15) that

T(CL') <P1($, 61) = 0901 (:C, 61)

or r(z) =C.

On the other hand / 7r7'd:1: = 0 implying C = 0. It follows that
r(z) = 0. °

I express my deep gratitude to Professor V. I. Smirnoff for his valuable

advice during this work.
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